Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation.

نویسندگان

  • L A Lione
  • R J Carter
  • M J Hunt
  • G P Bates
  • A J Morton
  • S B Dunnett
چکیده

Cognitive decline is apparent in the early stages of Huntington's disease and progressively worsens throughout the course of the disease. Expression of the human Huntington's disease mutation in mice (R6/2 line) causes a progressive neurological phenotype with motor symptoms resembling those seen in Huntington's disease. Here we describe the cognitive performance of R6/2 mice using four different tests (Morris water maze, visual cliff avoidance, two-choice swim tank, and T-maze). Behavioral testing was performed on R6/2 transgenic mice and their wild-type littermates between 3 and 14.5 weeks of age, using separate groups of mice for each test. R6/2 mice did not show an overt motor phenotype until approximately 8 weeks of age. However, between 3.5 and 8 weeks of age, R6/2 mice displayed progressive deterioration in specific aspects of learning in the Morris water maze, visual cliff, two-choice swim tank, and T-maze tasks. The age of onset and progression of the deficits in the individual tasks differed depending on the particular task demands. Thus, as seen in humans with Huntington's disease, R6/2 mice develop progressive learning impairments on cognitive tasks sensitive to frontostriatal and hippocampal function. We suggest that R6/2 mice provide not only a model for studying cognitive and motor changes in trinucleotide repeat disorders, but also a framework within which the functional efficacy of therapeutic strategies aimed at treating such diseases can be tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Olfactory abnormalities in Huntington's disease: decreased plasticity in the primary olfactory cortex of R6/1 transgenic mice and reduced olfactory discrimination in patients.

Reduced neuronal plasticity in the striatum, hippocampus, and neocortex is a common feature of transgenic mouse models of Huntington's disease (HD). Doublecortin (DCX) and polysialylated neural cell adhesion molecule (PSA-NCAM) are associated with structural plasticity in the adult mammalian brain, are markers of newly formed neurons in the dentate gyrus of the adult hippocampus, and are highly...

متن کامل

Effects of Citalopram on Learning and Memory in the Mouse and Rat

Data on the effects of serotonin reuptake inhibitors on learning and memory processes are not consistent. In the present study, the effects of citalopram, a very potent and completely selective inhibitor of the serotonin reuptake on spatial discrimination in the T-maze and Morris water maze, were assessed in mice and/or rats. Animals received different doses of citalopram (1, 2, 4, 8 or 16 mg/k...

متن کامل

Executive and mnemonic functions in early Huntington's disease.

Eighteen patients with early Huntington's disease were compared with age- and IQ-matched control volunteers on tests of executive and mnemonic function taken from the Cambridge Neuropsychological Test Automated Battery. Tests of pattern and spatial recognition memory, spatial span, spatial working memory, spatial planning and visual discrimination learning/attentional set shifting were employed...

متن کامل

Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration.

Huntington's disease (HD) is caused by an expanded CAG repeat in exon 1 of the gene coding for the huntingtin protein. The cellular pathway by which this mutation induces HD remains unknown, although alterations in protein degradation are involved. To study intrinsic cellular mechanisms linked to the mutation, we examined dissociated postnatally derived cultures of striatal neurons from transge...

متن کامل

Caspase-6-Resistant Mutant Huntingtin Does not Rescue the Toxic Effects of Caspase-Cleavable Mutant Huntingtin in vivo.

BACKGROUND The amelioration of behavioral and neuropathological deficits in mice expressing caspase-6-resistant (C6R) mutant huntingtin (mhtt), despite the presence of an expanded polyglutamine tract, highlights proteolysis of htt at the 586aa caspase-6 (casp6) site may be an important mechanism in the pathogenesis of Huntington disease (HD). One possible explanation of these effects is that C6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 23  شماره 

صفحات  -

تاریخ انتشار 1999